1,537 research outputs found

    Moxel DAGs: Connecting Material Information to High Resolution Sparse Voxel DAGs

    Get PDF
    As time goes on, the demand for higher resolution and more visually rich images only increases. Unfortunately, creating these more realistic computer graphics is pushing our computational resources to their limits. In realistic rendering, one of the common ways 3D objects are represented is as volumetric elements called voxels. Traditionally, voxel data structures are known for their high memory requirements. One of the standard ways these requirements are minimized is by storing the voxels in a sparse voxel octree (SVO). Very recently, a method called High Resolution Sparse Voxel DAGs was presented that can store binary voxel data orders of magnitudes more efficiently than SVOs. This memory efficiency is achieved by converting the tree into a directed acyclic graph (DAG). The method was also shown to have competitive rendering performance to recent GPU ray tracers. Unfortunately, it does not support storing collections of rendering attributes, commonly called materials. These represent a given object\u27s reflectance properties, and are necessary for calculating its perceived color. We present a method for connecting material information to High Resolution Sparse Voxel DAGs for mid-level scenes, with multiple meshes, and several different materials. This is achieved using an extended Sparse Voxel DAG, called a Moxel DAG, and an external data structure for holding the material information, we call a Moxel Table. Our method is much more memory efficient than traditional SVOs, and only increases in efficiency in comparison when at higher resolutions. Because it stores the equivalent information as SVOs, it achieves the exact same visual quality at the same resolutions

    Ariel - Volume 3 Number 7

    Get PDF
    Editors Richard J. Bonanno Robin A. Edwards Associate Editors Steven Ager Tom Williams Lay-out Editor Eugenia Miller Contributing Editors Paul Bialas Robert Breckenridge David Jacoby Mike LeWitt Terry Burt Michael Leo Editors Emeritus Delvyn C. Case, Jr. Paul M. Fernhof

    The Internal Extinction Curve of NGC 6302 and its Extraordinary Spectrum

    Get PDF
    In this paper we present a new method for obtaining the optical wavelength-dependent reddening function of planetary nebulae, using the nebular and stellar continuum. The data used was a spectrum of NGC 6302 obtained with a mean signal to noise of >10^2 A^-1 in the nebular continuum. With such a high S/N the continuum can be accurately compared with a theoretical model nebular plus stellar continuum. The nebular electron temperature and density used in the model are determined using ratios of prominent emission lines. The reddening function can then be obtained from the ratio of the theoretical and the observed continuum. We find that for NGC 6302, the visible to IR extinction law is indistinguishable from `standard' interstellar reddening, but that the UV extinction curve is much steeper than normal, suggesting that more small dust grains had been ejected into the nebula by the PN central star. Finally, using the extinction law that we have determined, we present a complete de--reddened line list of nearly 600 emission lines, and report on the detection of the He(2-10) and He(2-8) Raman Features at 4331 A and 4852 A, and the detection of Raman-Scattered OVI features at 6830 and 7087 AA.Comment: 32 pages, 7 figures, to appear in PASA 2002, 1

    Vascular Disrupting Agent Arsenic Trioxide Enhances Thermoradiotherapy of Solid Tumors

    Get PDF
    Our previous studies demonstrated arsenic trioxide- (ATO-) induced selective tumor vascular disruption and augmentation of thermal or radiotherapy effect against solid tumors. These results suggested that a trimodality approach of radiation, ATO, and local hyperthermia may have potent therapeutic efficacy against solid tumors. Here, we report the antitumor effect of hypofractionated radiation followed by ATO administration and local 42.5 °C hyperthermia and the effects of cisplatin and thermoradiotherapy. We found that the therapeutic efficacy of ATO-based thermoradiotherapy was equal or greater than that of cisplatin-based thermoradiotherapy, and marked evidence of in vivo apoptosis and tumor necrosis were observed in ATO-treated tumors. We conclude that ATO-based thermoradiotherapy is a powerful means to control tumor growth by using vascular disruption to augment the effects of thermal and radiation therapy

    Gene Ontology Analysis of Pairwise Genetic Associations in Two Genome-Wide Studies of Sporadic ALS

    Get PDF
    It is increasingly clear that common human diseases have a complex genetic architecture characterized by both additive and nonadditive genetic effects. The goal of the present study was to determine whether patterns of both additive and nonadditive genetic associations aggregate in specific functional groups as defined by the Gene Ontology (GO)

    An Integrated Approach for Characterizing Aerosol Climate Impacts and Environmental Interactions

    Get PDF
    Aerosols exert myriad influences on the earth's environment and climate, and on human health. The complexity of aerosol-related processes requires that information gathered to improve our understanding of climate change must originate from multiple sources, and that effective strategies for data integration need to be established. While a vast array of observed and modeled data are becoming available, the aerosol research community currently lacks the necessary tools and infrastructure to reap maximum scientific benefit from these data. Spatial and temporal sampling differences among a diverse set of sensors, nonuniform data qualities, aerosol mesoscale variabilities, and difficulties in separating cloud effects are some of the challenges that need to be addressed. Maximizing the long-term benefit from these data also requires maintaining consistently well-understood accuracies as measurement approaches evolve and improve. Achieving a comprehensive understanding of how aerosol physical, chemical, and radiative processes impact the earth system can be achieved only through a multidisciplinary, inter-agency, and international initiative capable of dealing with these issues. A systematic approach, capitalizing on modern measurement and modeling techniques, geospatial statistics methodologies, and high-performance information technologies, can provide the necessary machinery to support this objective. We outline a framework for integrating and interpreting observations and models, and establishing an accurate, consistent, and cohesive long-term record, following a strategy whereby information and tools of progressively greater sophistication are incorporated as problems of increasing complexity are tackled. This concept is named the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON). To encompass the breadth of the effort required, we present a set of recommendations dealing with data interoperability; measurement and model integration; multisensor synergy; data summarization and mining; model evaluation; calibration and validation; augmentation of surface and in situ measurements; advances in passive and active remote sensing; and design of satellite missions. Without an initiative of this nature, the scientific and policy communities will continue to struggle with understanding the quantitative impact of complex aerosol processes on regional and global climate change and air quality

    A Clinical Tool to Identify Candidates for Stress-First Myocardial Perfusion Imaging

    Get PDF
    Objectives: This study sought to develop a clinical model that identifies a lower-risk population for coronary artery disease that could benefit from stress-first myocardial perfusion imaging (MPI) protocols and that can be used at point of care to risk stratify patients. Background: There is an increasing interest in stress-first and stress-only imaging to reduce patient radiation exposure and improve patient workflow and experience. Methods: A secondary analysis was conducted on a single-center cohort of patients undergoing single-photon emission computed tomography (SPECT) and positron emission tomography (PET) studies. Normal MPI was defined by the absence of perfusion abnormalities and other ischemic markers and the presence of normal left ventricular wall motion and left ventricular ejection fraction. A model was derived using a cohort of 18,389 consecutive patients who underwent SPECT and was validated in a separate cohort of patients who underwent SPECT (n = 5,819), 1 internal cohort of patients who underwent PET (n=4,631), and 1 external PET cohort (n = 7,028). Results: Final models were made for men and women and consisted of 9 variables including age, smoking, hypertension, diabetes, dyslipidemia, typical angina, prior percutaneous coronary intervention, prior coronary artery bypass graft, and prior myocardial infarction. Patients with a score ≤1 were stratified as low risk. The model was robust with areas under the curve of 0.684 (95% confidence interval [CI]: 0.674 to 0.694) and 0.681 (95% CI: 0.666 to 0.696) in the derivation cohort, 0.745 (95% CI: 0.728 to 0.762) and 0.701 (95% CI: 0.673 to 0.728) in the SPECT validation cohort, 0.672 (95% CI: 0.649 to 0.696) and 0.686 (95% CI: 0.663 to 0.710) in the internal PET validation cohort, and 0.756 (95% CI: 0.740 to 0.772) and 0.737 (95% CI: 0.716 to 0.757) in the external PET validation cohort in men and women, respectively. Men and women who scored ≤1 had negative likelihood ratios of 0.48 and 0.52, respectively. Conclusions: A novel model, based on easily obtained clinical variables, is proposed to identify patients with low probability of having abnormal MPI results. This point-of-care tool may be used to identify a population that might qualify for stress-first MPI protocols

    Evaluating anthropogenic threats to endangered killer whales to inform effective recovery plans

    Get PDF
    Understanding cumulative effects of multiple threats is key to guiding effective management to conserve endangered species. The critically endangered, Southern Resident killer whale population of the northeastern Pacific Ocean provides a data-rich case to explore anthropogenic threats on population viability. Primary threats include: limitation of preferred prey, Chinook salmon; anthropogenic noise and disturbance, which reduce foraging efficiency; and high levels of stored contaminants, including PCBs. We constructed a population viability analysis to explore possible demographic trajectories and the relative importance of anthropogenic stressors. The population is fragile, with no growth projected under current conditions, and decline expected if new or increased threats are imposed. Improvements in fecundity and calf survival are needed to reach a conservation objective of 2.3% annual population growth. Prey limitation is the most important factor affecting population growth. However, to meet recovery targets through prey management alone, Chinook abundance would have to be sustained near the highest levels since the 1970s. The most optimistic mitigation of noise and contaminants would make the difference between a declining and increasing population, but would be insufficient to reach recovery targets. Reducing acoustic disturbance by 50% combined with increasing Chinook by 15% would allow the population to reach 2.3% growth
    corecore